<u>CHM 1025C</u>	<u>George W.J. Kenney, Jr</u>	<u>CT-5</u> <u>Ch</u>	<u>9 & 15</u>	<u>29-July-2009</u>							
NO CREDIT IF YOU: Fail to put in the Units & Properly Round, Fail to show ALL math work											
Max Grade: 104 pc	oints PRINT NA	ME ON LINE									
CHECK CORRECT	F BOX OR LOOSE 20 PTS	Т	Test End time								
Wed Afternoon Lab		Т	est Start time								
Wed Evening Lab		(1 pt)	Fest Elapsed time								

A. Answer the following (8 * 4 Points each = 32 pts)

1. In order to have a Limiting Reagant Calculation, you need:

2. What is meant by the term "Theoritical Yield"

3. A Bronstead-Lowrey Acid is:

4. A Lewis Base is:

5-6. For the reaction of Hydrochloric Acid ionizing in water to form the Hydronium and Chloride ions, write the reaction and label the Conjugate Acid / Base pair and which are the acids and bases:

7. The pH of distilled water is:

8. The pH of a solution of Drano [Sodium Hydroxide] is approximately:

A. Solve the following problems

- A-1. If I try to react 10.0 g of Magnesium and 12. g of Hydrochloric Acid,
 - (10 pts) A. Write the complete balanced equations
 - (10 pts) B. Will this reaction go to completion?
 - (20 pts) C. How much of each product is generated?

(20) A-2. If I try to react 10. g of Sodium Bromide reacting with 12.0 g of Silver Nitrate, if the reaction goes to completion, how much excess of the reagent in excess is there

(10 pts) A-3. If I try to react 10. g of Hydrochloric Acid with 12. g Potassium Hydroxide, if the reaction goes to completion, how much product if formed if the reaction goes to 75% completion?

(1 pt) DID YOU CHECK FOR SIGNIFICANT DIGITS (1 pt) DID YOU CHECK FOR PROPER UNITS (1 pt) How do you rate this test from 1 to 10

Yes	No
Yes	No

1 = Very Easy, can do it with my eyes closed, 10= Very Very Difficult, could not do any of the problems

1	1 H 1.008	2A											3A	4A	5A	6A	7A	2 He 4.003
2	3 Li 6.941	4 Be 9.012											5 B 10.81	6 C 12.01	7 N 14.01	8 0 16.00	9 F 19.00	10 Ne 20.18
3	11 Na 22.99	12 Mg 24.31	_									_	13 Al 26.98	14 Si 28.09	15 P 30.97	16 S 32.07	17 Cl 35.45	18 Ar 39.95
4		20 Ca 40.08	21 Sc 44.96	22 Ti 47.88	23 V 50.94	24 Cr 52.00	25 Mn 54.94	26 Fe 55.85	27 Co 58.93	28 Ni 58.69	29 Cu 63.55	30 Zn 65.38	31 Ga 69.72	32 Ge 72.59	33 As 74.92	34 Se 78.96	35 Br 79.90	36 Kr 83.80
5		38 Sr 87.62	39 Y 88.91	40 Zr 91.22	41 Nb 92.91	42 Mo 95.94	43 Tc (98)	44 Ru 101.1	45 Rh 102.9	46 Pd 106.4	47 Ag 107.9	48 Cd 112.4	49 In 114.8	50 Sn 118.7	51 Sb 121.8	52 Te 127.6	53 I 126.9	54 Xe 131.3
6	55	56 Ba	57 La*	72 Hf	73 Ta	74 W	75 Re	76 Os 190.2	77 Ir 192.2	78 Pt 195.1	79 Au 197.0	80 Hg 200.6	81 Tl 204.4	82 Pb 207.2	83 Bi 209.0	84 Po (209)	85 At (210)	86 Rn (222)
7	87 Fr (223)	88 Ra 226	89 Ac** (227)	104 Rf (261)	105 Db (262)	106 Sg (263)	107 Bh (264)	108 Hs (265)	109 Mt (268)	110 Ds (271)	111 Rg (272)		113 Uut	A CONTRACTOR OF A CONTRACTOR	115 Uup			

Chem 1025C